Logo
Linear Equations & Systems

Linear Equations & Systems

Chara Chara
September 26, 2025
3 min read
index

Introduction

These notes collect the core ideas from Lecture 1: what linear equations are, how to recognize and solve them, and how systems of such equations relate to geometry.


Linear equations

Definition (Linear Equation)

A linear equation in variables x1,,xnx_1,\dots,x_n has the form

a1x1+a2x2++anxn=b,a_1x_1+a_2x_2+\cdots+a_nx_n=b,

where all aia_i (and possibly bb) are constants.

Linear Equation Figure1: None of those wave can be coefficient

Solutions

Definition (Solution)

A solution is a list (s1,,sn)(s_1,\dots,s_n) such that substituting (xi=si)(x_i=s_i) makes the equation true:

a1s1+a2s2++ansn=b.a_1s_1+a_2s_2+\cdots+a_ns_n=b.

Example

0.190+0.1575+0.1585+0.695=90 0.1\cdot 90+0.15\cdot 75+0.15\cdot 85+0.6\cdot 95=90

Hence 90,75,85,9590,75,85,95 is a solution of 0.1x1+0.15x2+0.15x3+0.6x4=900.1x_1+0.15x_2+0.15x_3+0.6x_4=90


Lines (two variables)

Starting with slope–intercept form y=mx+by=mx+b

y=mx+b    mx+y=by=mx+b \iff -mx+y=b

which is a linear equation a1x1+a2x2=ba_1x_1+a_2x_2=b with x1=xx_1=x, x2=yx_2=y, a1=ma_1=-m, a2=1a_2=1

Thus any equation a1x1+a2x2=ba_1x_1+a_2x_2=b (with (a1,a2)(0,0)(a_1,a_2)\neq(0,0)) represents a line in the plane, and a pair (s1,s2)(s_1,s_2) is a solution iff the point lies on that line.

Linear Equation Figure2: Linear Equation and Lines


Linear Eq. System

Definition (Linear System)

A system of mm linear equations in nn variables is

a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bm\begin{aligned} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n&=b_1 \\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n&=b_2 \\ \vdots \\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n&=b_m \end{aligned}

A solution is a list s1,,snRns_1,\dots,s_n\in\mathbb{R}^n that satisfies all equations simultaneously.

Geometric intuition

Each equation is a line; solving the system means finding the intersection of the lines.

Example

{x1+2x2=3,2x1+x2=3(x1,x2)=(1,1). \begin{cases} x_1+2x_2=3,\\ 2x_1+x_2=3 \end{cases} \quad\Longrightarrow\quad (x_1,x_2)=(1,1).

Three outcomes are possible for a system of linear equations:

  • No solution (parallel, distinct lines) — inconsistent.

Linear Equation

  • Exactly one solution (lines intersect at one point).

Linear Equation

  • Infinitely many solutions (same line; solutions are parameterized).

Linear Equation


Matrices for a system

Extract the numbers into matrices.

  • Coefficient matrix
A=[a11a12a1na21a22a2nam1am2amn] A=\begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn} \end{bmatrix}
  • Augmented matrix
[Ab]=[a11a12a1nb1a21a22a2nb2am1am2amnbm][A|\mathbf{b}]= \left[ \begin{array}{cccc|c} a_{11}&a_{12}&\cdots&a_{1n}&b_1\\ a_{21}&a_{22}&\cdots&a_{2n}&b_2\\ \vdots &\vdots &\ddots&\vdots &\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}&b_m \end{array} \right]

These capture all the information needed to solve the system.


Elementary Row Operations (EROS)

The following row operations do not change the solution set of a system:

  1. Row interchange: swap two rows.
  2. Row scaling: multiply a row by a nonzero constant cc
  3. Row replacement: replace a row by itself plus cc times another row.

Using EROS to simplify [Ab][A|\mathbf{b}] is Gaussian elimination - Keep repeating this process until it’s in reduced row-echelon form (RREF) to get solutions.

Gaussian elimination

Solve

{x+2y=32x+y=3[123213] \begin{cases} x+2y=3\\ 2x+y=3 \end{cases} \quad\Longleftrightarrow\quad \left[\begin{array}{cc|c} 1&2&3\\ 2&1&3 \end{array}\right]

Apply EROS:

R2R22R1:[123033]R213R2:[123011]R1R12R2:[101011] \begin{aligned} R_2 \leftarrow R_2-2R_1&: \left[\begin{array}{cc|c} 1&2&3\\ 0&-3&-3 \end{array}\right] \\ R_2 \leftarrow -\tfrac13 R_2&: \left[\begin{array}{cc|c} 1&2&3\\ 0&1&1 \end{array}\right] \\ R_1 \leftarrow R_1-2R_2&: \left[\begin{array}{cc|c} 1&0&1\\ 0&1&1 \end{array}\right] \end{aligned}

Thus x=1, y=1x=1,\ y=1 (unique solution).


Summary

  1. A linear equation a1x1++anxn=ba_1x_1+\cdots+a_nx_n=b describes a line (n=2n=2), a plane (n=3n=3), or a hyperplane (n>3n>3).
  2. Solutions to a system are the intersection of these hyperplanes.
  3. A system has no solution, one solution, or infinitely many solutions.
  4. Use matrices and EROS (Gaussian elimination) to simplify to echelon / RREF and get solutions.

Adapted from the source lecture PDF.